On this page, we have compiled the complete list of short tricks and 39 formula for CSAT questions related to Algebra.
Buy Complete Formulae and Short Tricks PDF (+ Premium Membership) for Rs. 99
OR Read For Free Online
Most Important Algebra Formulae
Condition: a,b,c belong to N
-
$$(a + b)^2 = (a + b)(a - b) = a^2 + 2ab + b^2 = (a - b)^2 + 4ab$$
-
$$(a - b)^2 = a^2 - 2ab + b^2 = (a + b)^2 - 4ab$$
-
$$(a^2 - b^2) = (a + b)(a - b)$$
-
$$(a^2 + b^2) = (a + b)^2 - 2ab = (a - b)^2 + 2ab$$
-
$$(a + b +c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = a^2 + b^2 + c^2 + 2(ab + bc + ca)$$
-
$$(ab) = \left(\frac{a + b}{2}\right)^2 - \left(\frac{a - b}{2}\right)^2$$
-
$$(a + b)^3 = a^3 + b^3 + 3a^2b = a^3 + b^3 + 3ab(a + b)$$
-
$$(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 = a^3 - b^3 - 3ab(a - b)$$
-
$$a^3 + b^3 = (a + b)(a^2 + b^2 - ab) = (a + b)^3 - 3ab(a + b)$$
-
$$a ^ 3 - b ^ 3 = (a - b)(a ^ 2 + ab + b ^ 2) = (a - b) ^ 3 + 3ab(a - b)$$
-
$$a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab -bc -ca)$$
-
$$(a - b) ^ 2 = (b - a) ^ 2$$
-
$$(a - b) + (b - c) + (c - a) = 0$$
-
$$a(b - c) + b(c - a) + c(a - b) = 0$$
-
$$(a - k)(b - c) + (b - k)(c - a) + (c - k)(a - b) = 0$$
-
$$(x + a)(x + b)(x + c) = x ^ 3 + (a + b + c) x ^ 2 + (ab + bc + ca) x + abc$$
-
$$(a + b + c) ^ 2 = a ^ 2 + b ^ 2 + c ^ 2 + 2(ab + bc + ca)$$ $$a ^ 2 + b ^ 2 + c ^ 2 = (a + b + c) ^ 2 - 2(ab + bc + ca)$$
-
$$(a + b + c) ^ 3 = a ^ 3 + b ^ 3 + c ^ 3 + 3(a + b)(b + c)(c + a)$$ $$a ^ 3 + b ^ 3 + c ^ 3 = (a + b + c) ^ 3 - 3(a + b)(b + c)(c + a)$$
-
$$a ^ 2(b - c) + b ^ 2(c - a) + c ^ 2(a - b) = - (a - b)(b - c)(c - a)$$
-
$$a ^ 2 + b ^ 2 + c ^ 2 - ab - bc - ca = {1 \over 2} [(a - b) ^ 2 + (b - c) ^ 2 + (c - a) ^ 2]$$
Factorization Formulae
-
$$x ^ 2 + (a + b) x + ab = (x + a)(x + b)$$
-
$$x ^ 2 - (a + b) x + ab = (x - a)(x - b)$$
-
$$a^3 + b^3 + c^3 - 3abc = {1 \over 2}(a+b+c) [(a-b)^ 2 + (b−c)^ 2 + (c-a)^ 2]$$
-
$$a^3 - b^3 - c^3 - 3abc = (a-b-c)(a^2 + b^2+c^2 + ab - bc + ca)$$
-
$$2b ^ 2 c ^ 2 + 2c ^ 2 c ^ 2 + 2a ^ 2 b ^ 2 - a ^ 4 - b ^ 4 - c ^ 4 = (a + b + c)(b + c - a)(c + a - b)(a + b - c)$$
-
$$a ^ 2 (b - c) + b ^ 2 (c - a) + c ^ 2 (a - b) = - (b - c) (c - a)(a - b)$$
-
$$bc(b - c) + ca(c - a) + ab(a - b) = - (b - c) (c - a)(a - b)$$
-
$$a(b ^ 2 - c ^ 2) + b(c ^ 2 - a ^ 2) + c(a ^ 2 - b ^ 2) = (b - c)(c - a)(a - b)$$
-
$$(a + b + c) ^ 3 - a ^ 3 - b ^ 3 - c ^ 3 = 3(b + c)(c + a)(a + b)$$
-
$$4ab = (a + b) ^ 2 - (a - b) ^ 2$$
Fundamental Law of Indices
If m & n are positive natural numbers, following formulae are applicable:
-
$$a^m \times b^n = a^{m+n}$$
-
$${a^m \over b^n} = a^{m-n}$$
-
$${\left(a \over b\right)}^m = {a^m \over b^m}$$
-
$${\left(a^m\right)}^n = a^{mn}$$
-
$${a^m \over a^n} = a^{m-n} = {1 \over a^{n-m}}$$
-
$$a^{m \over n} = \sqrt[n]{a^m}$$
-
$$a^{m-m} = {a^m \over a^m} = 1 [\therefore a^0 = 1]$$
-
$${a^{-m}} = {1 \over a^m}$$
-
$$(ab)^m = a^m \times b^m$$
Get complete access to all CSAT Forumula and Tips and Tricks PDF for Just Rs.99.
Note: There are more important formula in our PDF. You can get it now for Rs.99 only (See below).